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Abstract: Airborne laser scanning (ALS) based stand level forest inventory has been used in Finland
and other Nordic countries for several years. In the Russian Federation, ALS is not extensively
used for forest inventory purposes, despite a long history of research into the use of lasers for forest
measurement that dates back to the 1970s. Furthermore, there is also no generally accepted ALS-based
methodology that meets the official inventory requirements of the Russian Federation. In this paper,
a method developed for Finnish forest conditions is applied to ALS-based forest inventory in the
Perm region of Russia. Sparse Bayesian regression is used with ALS data, SPOT satellite images
and field reference data to estimate five forest parameters for three species groups (pine, spruce,
deciduous): total mean volume, basal area, mean tree diameter, mean tree height, and number of
stems per hectare. Parameter estimates are validated at both the plot level and stand level, and the
validation results are compared to results published for three Finnish test areas. Overall, relative root
mean square errors (RMSE) were higher for forest parameters in the Perm region than for the Finnish
sites at both the plot and stand level. At the stand level, relative RMSE generally decreased with
increasing stand size and was lower when considered overall than for individual species groups.

Keywords: remote sensing; LiDAR; Sparse Bayesian regression; validation

1. Introduction

Airborne laser scanning (ALS) based forest inventory has been in operational use in Nordic
countries for several years [1,2]. Current operational applications are based on an area-based method
developed in Norway in 1997 [3] and developed further by Finnish researchers [4,5] to meet the
requirement that the inventory results should contain estimates for species distribution in mixed
species stands. The approach uses application of the k-nearest neighbor (k-NN) method or Bayesian
regression [6] and uses aerial images as additional data to improve the species estimates. Unlike the
method presented in [2], the Finnish application does not include pre-stratification based on main
tree species or forest development class. However, in practical work, the inventory area is usually
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selected so that it comprises only one vegetational zone and rather similar forest types. In addition,
young stands and mature stands are usually stratified based on tree height and inventoried separately.
The method is used in Finland to estimate mean forest characteristics by the most common species
groups, namely pine and spruce. Broad-leaved species, which represent only about 10 percent of the
total volume, are grouped in one class.

LiDAR (Light Detection And Ranging) was used in Russia for investigation of forest inventory
already in the 1970s and 1980s, before the introduction of airborne laser systems [7–9], and after
a hiatus during the turbulent 1990s, research of the technique resumed in the early 21st century [10,11].
Despite the long history of research in the area, no operational ALS-based method has been developed
for large-scale Russian forest inventory and auditing.

This study aims to test the performance of the standard procedure applied in Finland in
a large-scale management level forest inventory operation in the Perm region, Volga Federal District,
Russia. Large scale in this context means forest area of several thousand hectares, and management
level forest inventory means that the results should be accurate at forest stand level, which can be
considered as the smallest operational forest unit, i.e., an area of a few hectares or less. The inventory
data should be sufficiently accurate to support decision-making about forest operations, for example,
timing of thinning or clear-cutting, for an individual forest stand. Additionally, the inventory should
fulfill the quality criteria set by forest management authorities.

The Finnish Forest Centre has published forest resources data quality criteria [12]. For inventory
purposes, criteria are set for total mean volume (m3/ha) (V), basal area (m2/ha) (G), mean tree diameter
(cm) (D), and mean tree height (m) (H). The stand level criteria are set so that in 80% of the stands,
the estimates should not exceed the error limits: ±20%, ±3 m2/ha, ±3 cm, ±2 m for V, G, D and H,
respectively. Additionally, identification of the main tree species should be correct in cases where there
is a clear dominant tree species in a stand. Age and number of stems per hectare (N) are not included
in the Finnish Forest Centre quality criteria.

The data quality is controlled by plot level leave-one-out validation results produced by the
company submitting the inventory results and by independent stand level control measured by the
Finnish Forest Centre. The stand level control is usually done at the so-called micro stand or segment
level. Such micro stands are considerably smaller than normal operational forest stands (mean size of
micro stand <1 ha). Data quality is also checked at operational stand level by ocular assessment.

The method used in Finland [1] is able to meet the above-mentioned quality criteria in Finnish
conditions. In this study, however, the Finnish operational method is applied to new inventory
conditions, i.e., conditions in the Perm region in the Urals. Consequently, further research and
development may be needed to improve the method and ensure its suitability for Russian conditions
and requirements.

The input data for the ALS-based method considered here is sparse point density ALS data,
aerial images or equivalent optical multispectral data and field calibration plots. The number of
field calibration plots for one inventory area is 600–800 plots for an average inventory area of over
100,000 hectares [12]. The method produces inventory results in two congruent layers: grid and stand.
In the area-based method, the basic inventory unit is a cell of a regular grid. The area of each cell
is 16 m by 16 m, which corresponds to the size of the field calibration plot. The stand level results
are produced by aggregating the results from grid cells to the stand. The grid approach makes it
possible to re-calculate the inventory results for any geometry. For example, if stand borders change,
the inventory results can be calculated for the new stand geometry from the original grid.

In this study, the ArboLiDAR inventory tool kit developed by Arbonaut Ltd. was used for
inventory calculations [13]. Forest parameter estimates in the ArboLiDAR tool kit can be computed
with several different regression methods. The method used to compute these estimates in the current
experiment is Sparse Bayesian Regression (SBR) [6,14]. Sparse Bayesian Regression is a modified linear
regression method that automatically selects the covariates used to estimate each forest parameter.
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Thereby it also selects the number of covariates automatically. In the basic form of SBR, a different set
of covariates is used for each forest parameter.

Linear regression, often called Ordinary Least Squares (OLS), has two main advantages over
nearest neighbor methods such as k-NN and k-Most Similar Neighbor (k-MSN). Firstly, unlike nearest
neighbor methods, a linear regression model is able to produce estimates beyond the range of
parameters present in the training set. This property is particularly valuable for producing estimates
over large forest areas in poorly accessible forests, as is often the case with remote forestland. Secondly,
linear models can be made accurate with a substantially smaller number of field plots than nearest
neighbor models. This effect becomes more pronounced as the number of different forest parameters
to be estimated increases, e.g., when parameters pertaining to multiple tree species are required [15,16].
If the training set from the forest has been collected by simple random sampling or some other sampling
design that is unbiased by design, the estimates produced by SBR also have this property, i.e., they are
asymptotically unbiased when the field sample grows in size. In practice, estimates calculated with
SBR have very small systematic errors already with small sample sizes [6]. Further benefits in terms of
efficient use of a small number of sample plots and faithful reproduction of forest properties can be
attained by using refinements such as Bayesian Principal Component Regression (BPCR) [16,17] but
these methods have not yet been incorporated into the ArboLiDAR tool kit.

The aims of this study are to test the ALS-based forest inventory method developed for Finnish
conditions in the Perm region, Russia, and compare the results with results reported from Finnish
study sites. For this reason, we concentrate on the main timber related forest parameters estimated
in Finland, which are mean volume (V, m3/ha), basal area (G, m3/ha), stem count per hectare (N),
mean tree diameter (D, cm) and mean tree height, (H, cm). D and H are calculated as basal area
weighted means. The estimates are produced for tree species groups and totals. Tree species groups
are pine, spruce and broadleaved species. In addition, main tree species classification accuracy and
age estimation are considered, because they are important forest parameters in Russia, although they
are not of main interest in the comparison. In discussion, we consider possible research needs to adjust
the method to Russian conditions.

2. Materials and Methods

2.1. Study Area

The Solikamsk forest district (lesnichestvo) is located in the northern part of the Perm region
(Perm Krai). The total area of the district is 510,573 hectares. The length of the forest area from north to
south is 72 km, and from west to east 132 km. In total, the Solikamsk forest district includes six regional
forest subdivisions. The study area is located in the Solikamsk district in the former Polovodovsky
regional subdivision, and it is represented as a square of 10 × 10 km, where the village Polovodovo is
located roughly in the middle.

The area of the Solikamsk forest district belongs to the taiga forest vegetation zone of the West
Ural taiga region of the Russian Federation. These forests are characterized by a simple forest structure;
the shrub layer is absent or is poorly developed and grass-shrub and moss layers are well-developed.
Nemoral elements are almost entirely absent. Within the West Ural taiga region, two sub regions
are well recognized—one with a dominance of Nordic pine and spruce forests, and the other with
a dominance of Kama-Pechora-Zapadnouralskih fir-spruce forests. Forest cover of the Solikamsk
district is about 85%. According to forest inventory data from 2007, the study area is mostly occupied
by pine and spruce stands, 42% and 34%, respectively. Birch stands occupy 20% and aspen 4% of the
stands. The most represented forest types in the area are pine green moss stands (sosnyaki zelenomoshnie)
(32%), sorrel spruce stands (elniki kislichnyaki) (21%) and spruce green moss stands (elniki zelenomoshnie)
(17%). Bilberry pine forest (sosnyak chernichnik), pinewood sphagnum stands (sosnyak sphagnovii),
sedge-sphagnum pine stands (sosnyak osokovo-sphagnovii), polytric pine forest (sosnyak dolgomoshnik)
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and wet valley spruce forest (elnik log) together comprise 27% of the total area. Deciduous forest types
such as birch and alder occur over 3% of the total area.

The tree layer of pine green moss stands is dominated by Pinus sylvestris with an admixture
of Picea obovata, Betula pendula, Betula pubescens, Populus tremula, Abies sibirica, Larix sibirica
and Pinus sibirica. The tree layer of sorrel spruce forests is usually formed by Picea obovata with
an admixture of Betula pubescens, Betula pendula and Populus tremula. Alnus incana occurs rarely
with the fraction of Abies sibirica and Pinus sibirica. The green moss spruce stands are dominated by
Picea obovata and hybrid forms with Picea abies. Betula pendula, Betula pubescens and Abies sibirica
can be quite common and Populus tremula and Pinus sylvestris occur as minor species. The forests
in the study area are classified as high-productivity forests with a dominance of high yield stands
(Ia–II yield class) and mid-yield stands (III–IV). Low-yield stands (V–VA) represent less than 1% of
the area. Based on the relative basal area (otnositelnaya polnota), the forests are dominated by medium
stocked stands (srednepolnotnie) (relative basal area 0.6–0.8): 89% of the stands. Fully stocked stands
(visokopolnotnie) (relative basal area 0.9–1) and low-stocked stands (nizkopolnotnie) (relative basal area
0.5 and lower) represent 5% and 6%, respectively. Stands are well supplied with undergrowth (podrost)
on most of the territory. The average density is around 3000 stems per hectare. The understory
(podlesok) is generally sparse.

The location of the Perm study site together with the Finnish study sites are presented in Figure 1.
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Figure 1. Location of the Perm study site and the Finnish study sites marked with black triangles.
Background map data source and copyright DeLorme/Garmin Ltd. and Esri.

2.2. ALS and Satellite Data

Input data included sparse point density ALS data with a planned nominal point density of
4 points per m2, SPOT 5 satellite images, field reference data (field sample plots) and an existing
stand database.

ALS data were acquired in November 2013 with a Leica ALS70 CM laser scanner. The flying
altitude was 900–1000 m above ground level. The received point density of the ALS data in the study
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area was 3–4 points per m2. ALS data were pre-processed by the data vendor and provided in .las
format in the WGS84 coordinate system. Provided ALS data were filtered so that error points were
removed and the remaining observations were classified in two classes: ground and other points.
The ground classification was done with a triangulated irregular network (TIN) based algorithm.
The surface adapts to the points and new points are added only if they meet certain data derived
threshold parameters. Parameters are derived from the data and they change during the filtering
process. In an iterative process, a coarse TIN consisting of initial seed points is densified. The process
is described in detail in [18]. The processing of the data and digital terrain model (DTM) with 1 m
pixel size was generated from the point cloud data using Terrasolid’s Terrascan software. ALS data
were then height-normalized so that the ground level has a height 0 and all heights describe the height
from the ground level. This was done by subtracting the DTM from the orthometric heights.

SPOT 5 satellite data were acquired on 7 August 2014. The preprocessing level was 1A. The spatial
resolution of the panchromatic band in the SPOT 5 images is 2.5 m and for multispectral images 10 m.
Geometric correction for the original imagery was done using reference points, which were taken from
very high resolution image fragments. The resulting spatial resolution of the geometrically corrected
images was 10.7 and 2.7 m for multispectral and pan-sharpened images, respectively.

2.3. Field Reference Plots

The sample design used mimics the sampling used in Finland by Finnish Forest Centre [19].
The aim of the sampling is not to get a statistical sample, but a representative sample of all forest
types and development stages (young, developing, mature) in the whole inventory area. In the
Finnish Forest Centre’s sample design, an existing database is used to derive information on main
soil class (heathland or peatland), main tree species, basal area and mean diameter. An iterative
algorithm is used to get a representative sample that covers the variation in the inventory area. Cluster
sampling is used to make the field campaign more efficient. The Finnish Forest Centre’s sampling
method was developed in co-operation with Luke, Natural Resources Institute Finland (formerly
Metla, Finnish Forest Research Institute) and has some characteristics of the Finnish National Forest
Inventory sample design.

In this study, the sample design was adjusted for the available data using forest type information
from an existing stand database and deriving development class information directly from ALS heights
instead of the stand database. The initial number of forest types in the study area was 18. The initial
forest type classification is based on main species and fertility. The forest types were grouped in seven
classes: three pine classes with different fertility, three spruce classes with different fertility, and one
deciduous species group. The cluster design was adjusted from nine plots per cluster used in Finland
to four plots per cluster because of the relatively small and scattered inventory area. Distance between
the plots was set to 200 m as a compromise between avoiding spatial autocorrelation and minimizing
field data acquisition costs. Plots within a cluster are in “L” shape, see Figure 2. The field plot size was
set to 9 m fixed radius circular plot, which is the same as used in Finnish Forest Centre’s sampling.

Clusters that were very close to each other were removed using minimum distance of 700 m
between cluster centers as the removal criterion. This distance ensures that the clusters are not
overlapping. Height metrics based on ALS data were used to analyze whether the plots were located in
a forest or in a treeless, non-forest area. Plots that were located in treeless areas or in areas outside the
study area were removed. This allows for more efficient field work because field crews only visit areas
relevant to this project. In addition, clusters that ended up having only one plot were also discarded.
The initial sample had 308 plots.



Forests 2017, 8, 72 6 of 20

Forests 2017, 8, doi:10.3390/f8030072    6 of 20 

 

 

Figure 2. Plot layout in a cluster of four plots. 

Clusters that were very close to each other were removed using minimum distance of 700 m 

between  cluster  centers  as  the  removal  criterion. This distance  ensures  that  the  clusters  are  not 

overlapping. Height metrics based on ALS data were used to analyze whether the plots were located 

in a forest or in a treeless, non‐forest area. Plots that were located in treeless areas or in areas outside 

the study area were removed. This allows for more efficient field work because field crews only visit 

areas  relevant  to  this project.  In addition, clusters  that ended up having only one plot were also 

discarded. The initial sample had 308 plots. 

2.4. Plot Level Models 

The  plot  data  were measured  between  summer  2015  and  autumn  2016.  During  the  field 

campaign, diameter at breast height (DBH) was recorded for each tree with DBH at least 6 cm (tally 

trees). Smaller understory trees were also measured but these were not included in the research data. 

Heights were measured only from height sample trees. The height sample trees were chosen from 

the tally trees as the basal area median tree of each species. In addition to the basal area median tree, 

a tree smaller than the median tree and a tree larger than the median tree were selected as height 

sample trees, i.e., a maximum of three sample trees are measured per species. In total, 24.7% of all 

measured  trees were measured  as  height  sample  trees. Age was determined  for  selected  height 

sample trees to estimate the average forest age. 

Calculation of estimated forest parameters from the field measurements was done by applying 

local volume tables. All calculations were done using R‐software [20]. First, height was estimated for 

tally trees using a diameter–height (d–h) curve estimated from the height sample tree information on 

DBH and height. The data have a hierarchical structure (every tree belongs to one plot) and therefore 

a mixed modelling approach was used [21]. Trees within the same sample plot are assumed to be 

correlated. The fixed part is used if there is no height sample tree of that species in the plot and the 

random part is used if there is. By using the random part, the estimates become more accurate when 

height sample tree data are available. Different model forms were tested, after which a linearized 

Korf model was selected for use with all species. The fixed part of the model was used for some plots 

because in a few plots there were trees that did not have the same species height sample trees on the 

plot. 

The aim was to model each species separately but some species did not have enough sample 

tree observations to fit a realistic height model. Thus, it was decided that minor species would be 

combined with other species for height modeling and calculation. Pinus sibirica (18 height sample 

trees) was combined with Pinus sylvestris  (537 height sample  trees), and Sorbus aucuparia, Salix 

caprea, Tilia  cordata and Alnus  incana were  combined as one group  (total of 100 height  sample 

trees). 

Volume tables were used to calculate tree‐level volume for each tally tree. The calculation was 

based on species, DBH and height (either measured or estimated from the d–h curve) [22]. Volume 

Figure 2. Plot layout in a cluster of four plots.

2.4. Plot Level Models

The plot data were measured between summer 2015 and autumn 2016. During the field campaign,
diameter at breast height (DBH) was recorded for each tree with DBH at least 6 cm (tally trees).
Smaller understory trees were also measured but these were not included in the research data. Heights
were measured only from height sample trees. The height sample trees were chosen from the tally
trees as the basal area median tree of each species. In addition to the basal area median tree, a tree
smaller than the median tree and a tree larger than the median tree were selected as height sample
trees, i.e., a maximum of three sample trees are measured per species. In total, 24.7% of all measured
trees were measured as height sample trees. Age was determined for selected height sample trees to
estimate the average forest age.

Calculation of estimated forest parameters from the field measurements was done by applying
local volume tables. All calculations were done using R-software [20]. First, height was estimated for
tally trees using a diameter–height (d–h) curve estimated from the height sample tree information on
DBH and height. The data have a hierarchical structure (every tree belongs to one plot) and therefore
a mixed modelling approach was used [21]. Trees within the same sample plot are assumed to be
correlated. The fixed part is used if there is no height sample tree of that species in the plot and the
random part is used if there is. By using the random part, the estimates become more accurate when
height sample tree data are available. Different model forms were tested, after which a linearized
Korf model was selected for use with all species. The fixed part of the model was used for some
plots because in a few plots there were trees that did not have the same species height sample trees
on the plot.

The aim was to model each species separately but some species did not have enough sample
tree observations to fit a realistic height model. Thus, it was decided that minor species would be
combined with other species for height modeling and calculation. Pinus sibirica (18 height sample
trees) was combined with Pinus sylvestris (537 height sample trees), and Sorbus aucuparia, Salix
caprea, Tilia cordata and Alnus incana were combined as one group (total of 100 height sample trees).

Volume tables were used to calculate tree-level volume for each tally tree. The calculation
was based on species, DBH and height (either measured or estimated from the d–h curve) [22].
Volume tables were available for most species in the dataset. Each volume table had information on
rank (razryad visot), diameter, height and volume. Rank indicates the d–h ratio of the forest. If a graph
of the diameter and height values is made, it can be seen that the d–h curves for each rank are at
different levels. DBH was used for diameter and estimated or measured height was used for height.
With values for the diameter and height, it is possible to see which d–h curve is closest to the observed
value and the correct value for the volume can then be selected from the volume table.
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To automatize the calculation, a volume model for each species and rank was fitted based on the
values in the volume tables. A model of the form:

lnv = β0 + β1ln(DBH) + β2ln(height) (1)

was used. The correct volume model for each tree was chosen based on the rank value of the plot and
species in question. Smallest diameter value in the volume tables was 8 cm. However, in the measured
tree data, the minimum DBH set for the tally tree was 6 cm and the understory was also calculated.
For this reason, d–h curves for each rank and species were extrapolated to provide a more realistic
approximation of the rank for the small trees. The starting point for each curve was set to 1 cm and
1.5 m. Rank was determined for each plot and species whenever possible. Rank value determination
was based on the sample tree observations. First, diameter and height were calculated from the
observations within a single plot, and then it was checked which of the rank curves for that species was
closest. Only living trees were used in this analysis. Broken or dead trees were not used. There were
some exceptions in the dataset. In some plots, there were no sample trees of certain species. In such
cases, the average rank value for that species in the whole dataset was used as an approximation.
No volume tables were available for Padus avium and Sorbus aucuparia. An approximation with the
Salix caprea rank and volume model was used instead. For trees with a broken top, an approximation
based on estimated height and cylinder volume was used.

V, G, N, D and H were calculated for totals and for species groups. The data contained many
tree species, some of which had been observed only on a few plots. When tree-level information was
aggregated into a plot level dataset, the species were combined into groups. The grouping was done
to form groups similar to those used in Finland. The pine group included Pinus sylvestris and Pinus
sibirica, spruce included Picea abies and Abies sibirica, and the deciduous group comprised Betula
pendula, Tilia cordata, Populus tremula, Salix caprea and Alnus incana.

Average age of the plot was calculated as basal area weighted average based on the sample trees
that had age information. H was calculated using all tally trees. Consequently, some of the trees
had estimated height and some measured height. G and N were scaled to hectare level. Mature
forest and understory information were processed separately. Information about dead trees was also
calculated separately.

The plot level H values were compared against ALS data. First, plot locations were buffered
with the radius of the plot, and then the 90% percentile of ALS height was calculated for each plot
using the ALS observations within the plot. If there is a big difference in the field measured height
and ALS height observation, it is likely that these plots have errors in either the positioning, height
measurements or height model. Changes in the forest between the remote sensing data acquisition and
field measurements may also cause such differences. Changes could be caused by forest operations
or storm damage. The removal of plausible erroneous plots is a common practice in operational
projects. In this data set, 19 plots with biggest difference in calculated plot level height and 90%
percentile of ALS height were discarded. A height difference of 5 m or above was used as the discard
criterion, after checking the plot data visually against the ALS-based canopy height model. In addition,
two plots were removed because their measured location was outside the study area; one plot because
it possessed an unrealistically high measured V, and five plots were discarded because of a large
number of standing dead trees (over 60% of total V). A summary of the final plot level data used in
further processing is presented in Table 1.
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Table 1. Field sample data statistics, mean values and (standard deviations). n = 281. V = total volume,
G = basal area, N = stem number, H = tree height, D = breast height diameter.

Pine Spruce Deciduous Total

V, m3/ha 151.1 (159.6) 142.7 (141.1) 68.0 (113.0) 361.7 (163.3)
G, m2/ha 14.4 (14.6) 15.0 (13.1) 6.9 (10.6) 36.3 (14.0)
N, n/ha 317.0 (409.7) 618.5 (428.7) 244.1 (380.7) 1180.0 (533.0)

H, m 21.7 (4.3) 16.6 (5.6) 18.4 (5.2) 20.4 (3.6)
D, cm 28.9 (8.2) 21.2 (8.8) 21.5 (8.8) 26.2 (6.1)

2.5. Inventory Model Construction

The inventory model was formulated based on 281 plots. Several ALS variables were calculated
for the plots using the height-normalized ALS point cloud. The ALS variables were based on
features described in [15]. These variables include height percentiles for the first-pulse and last-pulse
returns, mean height of first-pulse returns above 5 m (high-vegetation returns), standard deviation for
first-pulse returns, ratio between first-pulse returns from below 1 m and all first-pulse returns, and the
ratio between last-pulse returns from below 1 m and all last-pulse returns. Linearizing transformations
of the ALS variables were also calculated. From SPOT data, mean values from each band were
calculated, as well as mean values from band combinations calculated as: (band a − band b)/(band
a + band b). Band combinations used were bands 1 and 2, bands 3 and 2, and bands 1 and 3.

The estimation method used, SBR, introduces another estimation layer on top of the standard
OLS likelihood function:

p
(

y
∣∣∣β, σ2

)
=
(

y
∣∣∣Xβ, σ2

)
=

1

(2πσ2)
n/2 exp

(
−‖y− Xβ‖2

2σ2

)
(2)

where y is a vector of n measured forest parameter values, X is an n× p matrix of corresponding
covariate values with p separate covariates, β is a vector of p regression parameters to be estimated,
and σ2 is the variance of model residuals ε = y− Xβ that follow the N

(
0, σ2) distribution. A penalty

term is added to every covariate to be incorporated into the model. In practice, this is carried out
by introducing a hyper-parameter αj to every covariate that expresses the inverse of the variance of
a normal distribution with mean value zero that represents the probability of different values of the
parameter value assigned to that covariate. This penalty term is incorporated using the prior:

p(β|α) =
p

∏
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βT Aβ
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where p × p matrix A is a diagonal matrix of hyper-parameters α = α1, α2, . . . , αp related to each
regression covariate. Regression parameters are therefore treated as random variables that deviate
from zero according to the product of the likelihood and the prior, and the hyper-parameter defines the
allowed amount of deviance. This logic is incorporated in the posterior given by the Bayesian formula:

p
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)
=

p
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y
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(4)

where p
(
y
∣∣β, σ2) is the likelihood given by Equation (2), the penalty term is given by the prior p(β|α)

given by Equation (3), and:

p
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)
=
∫
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)
p(β|α)dβ (5)

is the marginal likelihood.
In SBR, this marginal likelihood is maximized to estimate the hyper-parameters and the residual

variance (type-II maximum likelihood method). Estimated hyper-parameter values are defined for
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each covariate if the covariate is allowed into the regression model, which happens only if it increases
model fit more than the penalty of adding it.

With SBR, the variable selection can be fully automated. However, some initial variable
selection was done manually to decrease the initial set of variables and to test different linearizing
transformations. The selected input variables are described and listed in Appendix A in
Tables A1 and A2.

2.6. Model Validation

During model validation, the estimation process was run automatically for each plot with the
leave-one-out method, i.e., calculation of an estimate for each forest parameter was done using all the
other field calibration plots except the one that was being estimated. The plot level validation statistics
were also calculated with leave-one-out cross-validation. In addition, independent validation data
were collected from eight plots with a size of 0.25 hectares and 10 plots with a size of 0.5 hectares.
The validation plots were square plots placed inside 18 different forest stands. All trees inside the plot
were measured in the same manner as the field calibration plot data. The estimates for the validation
plots were calculated with a grid approach, i.e., the plot was divided into grid cells, estimates were
produced for the cells, and cell level estimates were aggregated at plot level. Because the independent
validation data size was so small, artificial stands were used, generated from field calibration plots by
grouping the field calibration plots based on the measured species group and ordering the plots inside
the groups by mean volume. Then, the artificial stands were aggregated from the ordered lists by
combining plots with the same species group and least difference in mean volume. The first artificial
stand included the plot with the lowest mean volume and n-1 next plots in ascending volume order,
the second artificial stand included the plot with the second lowest mean volume and n-1 next plots in
ascending volume order, and so on. Thus, it was possible to generate artificial stands with different
mean sizes by changing the value of n. The stand sizes used were 0.1 ha (aggregation of n = four field
calibration plots), 0.25 ha (n = 10 plots), 0.5 ha (n = 20 plots) and 1.0 ha (n = 40 plots). Result validation
was performed using root mean squared error (RMSE):

RMSE =

√
∑n

i=1(yi − ŷl)
2

n
(6)

where n is the number of field calibration plots, yi is the observed (field measured) value and ŷl is
the estimated value for the field calibration plot. RMSEs were calculated as relative to the mean
and standard deviation (SD), i.e., by dividing the RMSE with the mean or SD of the measured value.
Main tree species classification accuracy was investigated by calculating the overall classification
accuracy, which is the number of correctly classified plots divided by the total number of plots,
from the species group volumes.

The results of the Perm study area are compared with three published results from Finland.
The studies were by Packalén and Maltamo from 2007, who studied an area located in central eastern
Finland [5], by Maltamo et al. from 2009, who investigated an area located in western Finland [23],
and by Wallenius et al. from 2012, whose work considered an area located in northern Finland [24].
These studies are referred to further in the text based on their location and year: Matalansalo
2007, Kuortane 2009 and Kuhmo 2012. The inventory for the first and second study were done
for research purposes, whereas the third study was a validation of an operational inventory. The main
characteristics of the studies are presented in Table 2. More detailed description of the study areas and
methods can be found in the original articles.
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Table 2. Main characteristics of the Perm study and three Finnish studies.

Perm Matalansalo 2007 Kuortane 2009 Kuhmo 2012

Size of the study area, ha 10,000 2000 1 22,000 50,403

ALS data, nominal
sampling density,
scan year

~4/m2, 2013 0.7/m2, 2004 0.64/m2, 2006 ~1/m2, 2008

Aerial imagery, GSD, year 2.5 m, 2014 2 0.5 m, 2004 3 0.5 m, 2006 N/A, 2004

Modeling plots, number of
plots, acquisition year 4 281, 2015–2016 463, 2004 335, 2006 471, 2008–2009

Inventory method Sparse Bayesian
regression k-MSN k-MSN Sparse Bayesian regression

Number of validation
stands Mean validation
stand size

18 independent, 271–164
artificial, 0.1–1.0 ha 5 67, 1758 m2 69, 1.0 ha 60, 0.74 ha

Mean volume, m3/ha
457.9 (independent)
361.7 (artificial) 5 203.4 149.1 104.3

SD of volume, m3/ha
111.2, (independent)
151.7–83.3, (artificial) 5 90.55 N/A N/A

Tree species
distribution in %
(pine, spruce, deciduous)

42, 39, 19 (artificial) 5 49, 41, 11 76, 16, 8 63, 21, 16

Validation data
collection method

Independent validation
data with all trees
measured and artificial
stands generated from
modeling plots 5

Modeling plots inside
the same stand.
On average seven plots
per stand.

Independent validation
data. Systematic sample of
fixed radius (9 m) sample
plots. On average five
plots per stand.

Independent validation
data. Systematic sample of
fixed radius (9 m) sample
plots. On average eight
plots per stand.

1 Estimated extent; 2 SPOT satellite imagery; 3 Film camera; 4 A circular sample plot of fixed 9 m radius was used
in all studies; 5 Stand level results aggregated from plots belonging to the same stand, not from actual stand level
estimates. SPOT (French: Satellite Pour l’Observation de la Terre) sensor, Airborne Laser Scanning (ALS), Ground
Sample Distance (GSD), k-Most Nearest Neighbors (k-MSN), Standard Deviation (SD), Not Available (N/A).

3. Results

The results are presented at field reference plot level and at stand level. The results of the Perm
study area are compared with previously published research results from Finland. Comparison at field
reference plot level is straightforward since the same plot type is used in all the studies. The stand level
results are more difficult to compare because of differences in the collection methods for the validation
data. In Matalansalo 2007, stand level validation data were aggregated from the sample plot data
used in the estimation. The sample plot data were sampled by first selecting stands and, on average,
seven plots were then systematically placed inside a stand. In addition, the ALS-based estimates were
produced for the plots only. The stand level estimate and the reference is then the average from the
plots belonging to the same stand. In Kuortane 2009 and Kuhmo 2012, an independent set of stands was
selected for result validation. A systematic sample of plots was measured from each validation stand
(on average, five plots in Kuortane 2009 and eight plots in Kuhmo 2012). The ALS-based estimates
for the validation stand were produced by predicting the values for grid cells covering the entire
stand and aggregating the results from the grid. Thus, in Kuortane 2009 and in Kuhmo 2012, the field
reference contains the field sampling error. In Kuhmo 2012, the validation results were calculated
with and without removing the sampling error, whereas in Kuortane 2009, the sampling error was not
removed. In our study, the stand level validation was generated from the sample plot data used in
the estimation, as done in Matalansalo 2007, with the difference that in Perm, the initial plot sample
was not done at stand level, and therefore, the stands were artificially generated by ordering the plots
based on species group and mean volume and aggregating artificial stands from the ordered list.

3.1. Field Reference Plot Level Results

Field reference plot level results of leave-one-plot-out validation are presented in Table 3 and in
Table 4. Table 3 presents RMSE values relative to the mean and Table 4 RMSE values relative to the
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standard deviation of each forest parameter. In Table 4, results from the Perm study area are compared
only to Matalansalo 2007, since the SD was not reported in Kuortane 2009 and Kuhmo 2012.

Table 3. Plot level root mean square errors (RMSE) values relative to the mean in the Perm and
Finnish studies.

Perm Matalansalo 2007 Kuortane 2009 Kuhmo 2012

Pine
V 0.67 0.52 0.48 0.49
G 0.64 0.47 0.39 0.46
N 0.73 0.61 0.45 0.51
D 0.25 0.23 0.21 0.14
H 0.18 0.16 0.15 0.09

Spruce
V 0.64 0.56 1.25 1.04
G 0.56 0.51 1.14 0.94
N 0.54 0.64 1.11 0.78
D 0.37 0.33 0.55 0.24
H 0.29 0.30 0.51 0.16

Deciduous
V 0.84 1.03 1.47 1.48
G 0.82 0.88 1.23 1.34
N 1.01 0.90 1.24 0.99
D 0.51 0.46 0.62 0.34
H 0.44 0.32 0.43 0.19

Total
V 0.28 0.20 0.25 0.25
G 0.27 0.17 0.21 0.23
N 0.36 0.30 0.33 0.28
D 0.16 NA NA 0.12
H 0.07 NA NA 0.08

The species-specific plot level results vary substantially between the studies. The species-specific
results are difficult to compare because of different species distribution. In all studies, the most
common species is pine, spruce is the second most common, and the deciduous group is the smallest
group. Correspondingly, the RMSE values relative to the mean are smallest for pine and spruce and the
deciduous group has the largest RMSE values. However, in Perm and in Matalansalo 2007, the spruce
and pine groups have almost the same mean values and the differences in RMSE values relative to
the mean are smaller than in Kuortane 2009 and Kuhmo 2012. In Perm, the spruce group has smaller
RMSE values relative to the mean for V, G, and N than the pine group. Compared to Matalansalo
2007, in Perm, the species-specific RMSE values relative to the mean are on average 3.9 percentage
points higher. Compared to Kuhmo 2012 and Kuortane 2009, the corresponding RMSE values are
4.7–16.1 percentage points lower. For total V, G and N, the RMSE values relative to the mean are 7.7,
4.9 and 3.8 percentage points higher in Perm than in Matalansalo 2007, Kuortane 2009 and Kuhmo
2012, respectively. RMSE values relative to the SD are on average 18 percentage points higher in Perm
than in Matalansalo 2007.
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Table 4. Plot level RMSE values relative to the standard deviation in Perm and Matalansalo 2007.

Perm Matalansalo 2007

Pine
V 0.63 0.58
G 0.63 0.59
N 0.56 0.62
D 0.90 0.67
H 0.91 0.50

Spruce
V 0.65 0.42
G 0.64 0.46
N 0.78 0.75
D 0.89 0.58
H 0.86 0.55

Deciduous
V 0.50 0.62
G 0.54 0.58
N 0.65 0.61
D 1.25 0.84
H 1.57 0.82

Total
V 0.63 0.41
G 0.69 0.53
N 0.79 0.65
D 0.69 NA
H 0.41 NA

3.2. Stand Level Result Construction and Validation

Stand level results are presented in Tables 5 and 6. Table 5 presents RMSE values relative to
the mean and Table 6 RMSE values relative to the standard deviation. In Table 6, Perm results are
compared only to Matalansalo 2007, since the SD was not reported in Kuortane 2009 and Kuhmo 2012.
Perm results are aggregated for different stand sizes to better enable comparison with the other studies.

In Matalansalo 2007, stand level results were produced by aggregating the results of seven plots,
on average. This results in a mean stand size of 0.18 ha. Thus, the comparison between Perm and
Matalansalo 2007 stand level results is done based on the Perm results aggregated at 0.1 and 0.25 ha
stand size. In Kuortane 2009 and in Kuhmo 2012, the stand level validation data were aggregated
from the grid covering the entire stand in question. In Kuhmo 2012, the mean stand size was 0.74 ha
and an average of eight plots were sampled from each stand. In Kuortane 2009, the mean stand size
was 1.0 ha and five plots were sampled from each stand. In Kuhmo 2012, the validation RMSEs were
calculated with and without removing sampling error. In Kuortane 2009, the sampling error was not
removed. The stand level validation results without removing the sampling error overestimates the
stand level errors compared to the Perm and Matalansalo 2007 stand level results, where there is no
sampling error. Thus, Kuortane 2009 stand level results should not be directly compared with Perm
1 ha results, although the average stand size is the same. In Kuhmo 2012, the results after removing
the sampling error can be considered comparable with the Perm 0.5 and 1.0 ha results.
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Table 5. Stand level RMSE values relative to the mean in the Perm and Finnish studies. In Perm, the
results are presented for four different levels of aggregation.

Perm, 0.1 ha Perm, 0.25 ha Perm, 0.5 ha Perm, 1.0 ha Matalansalo 2007 Kuortane 2009 Kuhmo 2012 1

Pine
V 0.50 0.42 0.38 0.34 0.28 0.31 0.33 (0.27)
G 0.47 0.40 0.37 0.33 0.27 0.24 0.31 (0.24)
N 0.45 0.36 0.33 0.10 0.41 0.27 0.37 (0.30)
D 0.23 0.17 0.15 0.15 0.17 0.09 0.16 (0.14)
H 0.17 0.12 0.10 0.09 0.08 0.16 0.11 (0.09)

Spruce
V 0.50 0.45 0.43 0.40 0.33 1.28 0.63 (0.47)
G 0.41 0.36 0.34 0.31 0.31 1.21 0.68 (0.57)
N 0.30 0.22 0.18 0.14 0.38 1.20 0.83 (0.77)
D 0.24 0.20 0.18 0.16 0.20 0.40 0.40 (0.39)
H 0.18 0.15 0.13 0.12 0.18 0.39 0.37 (0.37)

Deciduous
V 0.58 0.45 0.40 0.42 0.62 1.08 0.69 (0.60)
G 0.51 0.37 0.34 0.33 0.52 0.90 0.74 (0.67)
N 0.47 0.33 0.30 0.34 0.48 0.97 0.96 (0.91)
D 0.48 0.42 0.39 0.38 0.25 0.37 0.39 (0.38)
H 0.44 0.39 0.37 0.35 0.18 0.27 0.35 (0.34)

Total
V 0.21 0.18 0.15 0.12 0.10 0.19 0.15 (0.07)
G 0.19 0.16 0.14 0.11 0.09 0.14 0.16 (0.10)
N 0.20 0.15 0.13 0.10 0.16 0.22 0.34 (0.31)
D 0.09 0.6 0.4 0.02 NA NA 0.10 (0.08)
H 0.05 0.03 0.02 0.01 NA NA 0.10 (0.09)

1 Value in parenthesis is the RMSE without sampling error.

Table 6. Stand level RMSE values relative to the standard deviation in Perm and Matalansalo 2007.
In Perm, the results are presented for three different levels of aggregation.

Perm, 0.1 ha Perm, 0.25 ha Perm, 0.5 ha Matalansalo 2007

Pine
V 0.51 0.45 0.44 0.41
G 0.51 0.45 0.44 0.44
N 0.44 0.38 0.38 0.48
D 0.97 0.90 1.06 0.53
H 1.03 0.85 1.24 0.28

Spruce
V 0.55 0.52 0.51 0.27
G 0.52 0.48 0.46 0.32
N 0.63 0.55 0.52 0.59
D 0.82 0.82 0.86 0.40
H 0.78 0.75 0.74 0.37

Deciduous
V 0.38 0.30 0.27 0.51
G 0.37 0.27 0.24 0.47
N 0.37 0.26 0.23 0.45
D 1.40 1.79 2.23 0.69
H 1.76 2.40 3.13 0.63

Total
V 0.50 0.47 0.49 0.23
G 0.55 0.53 0.55 0.34
N 0.75 0.71 0.71 0.65
D 0.55 0.51 0.46 NA
H 0.34 0.34 0.30 NA

The species-specific stand level results vary between the studies, likewise with plot level results.
Especially in Kuortane 2009, the validation results for spruce and deciduous groups are worse than the
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results for pine. Compared to Matalansalo 2007, the species-specific RMSE values relative to the mean
are on average 11.5 percentage points higher in Perm when the comparison is made with the Perm
0.1 and 0.25 ha results. For total V, G and N, the RMSEs are 10.7 percentage points higher in Perm.
In the case of Kuhmo 2012, the comparison is done using the mean of Perm 0.5 and 1.0 ha results.
Compared to validation results after sampling error removal, the RMSE relative to the mean is 7.4 and
2.4 percentage points higher for V and G, respectively, in Perm. For N, the RMSE in Perm is almost
20 percentage points lower than in Kuhmo 2012. If the previous comparisons with the Kuhmo 2012
results are done before removing the sampling error, the Perm results show slightly better accuracies
than Kuhmo 2012. Perm results show better agreement between estimated and field measured data
than Kuortane 2009, if 1 ha results are compared.

RMSE values relative to the SD for species-specific stand level results are on average 28 percentage
points higher in Perm than in Matalansalo 2007, when Perm 0.1 and 0.25 ha results are considered.
For total V, G and N, the difference is 24 percentage points. Additionally, it can be noted that RMSE
values relative to the SD do not decrease from 0.25 to 0.5 hectares for all forest parameters.

In Perm, independent validation data were also collected, from eight plots with a size of
0.25 hectares and 10 plots with a size of 0.5 hectares. The number of plots in the independent validation
data is rather small, and therefore, the data were used only for verifying the results presented in
Tables 4 and 5. Only total V and G were investigated. The RMSEs relative to the mean for V were
0.14 and 0.13 in 0.25 and 0.5 ha validation data, respectively. These are slightly smaller values than
the values presented in Table 5. The RMSEs relative to the mean for G were 0.16 and 0.12 in the 0.25
and 0.5 ha validation data, respectively. These are the same or slightly smaller values than the values
presented in Table 5. The RMSEs relative to the SD for V were 0.48 and 0.49 in the 0.25 and 0.5 ha
validation data, respectively. The RMSEs relative to the SD for G were 0.59 and 0.60 in the 0.25 and
0.5 ha validation data, respectively. The values for V are very close to the values presented in Table 6.
For G, the validation data values are slightly larger than those given in Table 6. A similar trend of
increasing RMSEs relative to the SD from the 0.25 and 0.5 ha levels can be noticed in Table 6 and in the
independent validation.

Mean age was estimated in Perm at RMSE relative to the mean of 0.23 accuracy. In the artificially
generated stand data, the RMSE relative to the mean drops from 0.13 at 0.1 ha to 0.06 at 1 ha level.
However, the RMSE relative to the SD starts to increase in artificial stand data after 0.25 ha stand size.

4. Discussion

4.1. Comparison with Other Studies and Approaches

The results of the study for total and species group level V, G, N, D and H are encouraging,
although they are of lower accuracy than the results achieved in ALS-based inventory projects in
Finland. There are multiple issues that may have contributed to the lower quality of results. First,
the number of field calibration plots was lower than in the Finnish studies (281 vs. 336–471). Secondly,
instead of using aerial images with spatial resolution of 0.5 m, SPOT 5 images with 2.7 m pixel size
were used. Thirdly, the input data were acquired over quite a long period; there were more than two
full growth seasons between the ALS data acquisition and completion of the field campaign.

In general, the estimation accuracy decreases as the field reference plot sample size decreases [25].
The use of high resolution satellite images instead of aerial images does not necessarily decrease the
quality. For example, in [26], it was reported that using QuickBird satellite images in ALS-based
inventory produced similar or even better accuracy for species-specific results than using aerial images.
The large time gap between the remotely sensed and field data acquisition weakens the temporal match
between the input data sources and introduces noise in the models because forest is a dynamic system.

In this study, the ALS point density was higher than in the Finnish comparison studies
(3 points/m2 vs. <1 point/m2). However, based on results reported in [27], with area-based methods
the decreased point density does not increase the estimation errors significantly.
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The results were validated using artificial forest stand data generated from the field reference plot
data. Based on the 1 hectare results, the method fulfils the stand level accuracy requirements for total
variables (H, D, V and G) set in Russia for the measuring method according to Appendix 9 of the Forest
Management Instruction 2011 (Prikaz Federalnogo Agentstva Lesnogo Hozyaistva ot 12 dekabrya 2011 goda
No. 516 ob utverzdenii lesoustroitelnoi instruktsii) (Table 7) [28]. For smaller stand size, the method may
not provide the required accuracy. In addition, assessment of the estimation accuracies of the species
composition and age against the official requirements needs more research and testing.

Table 7. Stand-level accuracy requirements of main forest parameters for different forest inventory
methods in Russia.

Attribute Unit Measurement
Method 1

Ocular
Method 2

Photo Interpretation
Method 3

Height % 8 10 15
Diameter % 10 12 20

Volume per ha % 15 20 30

Coefficient of species composition
for dominant species 10% 1 1.5 1.5

Age, <40 year +/−5 +/−10 +/−15
Age, 40–100 year +/−10 +/−15 +/−20
Age, >100 year +/−10 +/−25 +/−35

Relative basal area (polnota) +/−0.1 +/−0.1 +/−0.2

Maximum systematic error for
any of attributes % +/−5 +/−5 +/−10

1 Method based on field measurements; 2 Method based on ocular assessment of forest parameters in field; 3 Method
based on visual interpretation of aerial images.

Although the use of artificial stands as validation data gave congruent results of V and G
with the independent plot validation data at 0.25 and 0.5 ha size plots, use of artificial stands
generated from the modeling plot data may give too optimistic accuracies for other forest parameters.
In addition, quite a lot of field plots were removed because of assumed errors in plot positioning or
field measurements, as well as some plots with a large amount of dead wood. This procedure improves
the model fit in the modeling data, but it also means that the model should be applied only for stands
with a low amount of dead wood. Nevertheless, the results indicate that despite problems acquiring
optimal input data, it was possible to produce reasonably good results for the study area and the
accuracies are comparable with another remote sensing based inventory method used in Russia [29].
This method is based on visual interpretation of high altitude aerial images and the method has been
reported to meet the requirements set by Russian authorities for the ocular method.

The forests of the study area differ from the forests in the Finnish comparison studies, at least to
some extent, in species composition and forest structure, as well as forest management practices.
Moreover, the inventory requirements are different. Further research is needed to develop the
ALS-based forest inventory method for Russian conditions. Species distribution and age are most
likely the forest parameters that need special focus in further research, since these parameters are either
not important in the Finnish context (age) or are estimated in a simplified manner (species estimation
by species groups) not necessarily applicable from the viewpoint of Russian inventory requirements.
Nevertheless, the ALS-based method tested here is transferable to Russian circumstances, albeit with
some modification. The issues mentioned above, age and species, would probably require more
intensive field sampling and more sophisticated methods for satellite data analysis.

4.2. Validation Metrics

Relative RMSE is commonly used for reporting estimation accuracy. However, relative RMSE
depends heavily on the mean value and, therefore, gives large error values for V, G and N of minor
species. Furthermore, the variation of forest parameters affects the RMSE values, too. Thus, the results
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from different study areas are not directly comparable. In this study, we tested use of RMSE relative to
the SD in addition to RMSE relative to the mean. RMSE relative to the SD gives additional information
for model performance evaluation. For example, it revealed for our data that after aggregating more
than 10–20 plots, there was no further improvement in the calculated values.

Another important issue in results validation is the acquisition of independent validation data.
If the user of the inventory data is interested in stand level accuracy, the natural validation data
would be stand level measurements. As can be seen from Tables 3–6, the RMSEs tend to improve
significantly from plot to stand level as the average stand size gets larger. This is because of the
averaging effect. Furthermore, the variation between the stands decreases as stand size increases.
Thus, if the accuracy requirements for the inventory are set at stand level, the plot level error estimates
should be interpreted correctly and they should not be used to directly judge if the accuracy meets
the requirements. Acquiring comprehensive stand level validation data is laborious work, which can
significantly increase the costs of the inventory project [24]. In practice, it is impossible to collect
very accurate and comprehensive stand level validation data in operational projects. The methods
presented in [23,24] are probably possible at operational scale, but they include sampling error, because
only sample plots and not every tree is measured in the field. If sampling error is not removed,
the methods can overestimate the errors significantly. However, these sample plot based methods are
conservative and the significant overestimation of error associated with these methods is therefore
rather unproblematic. Validation methods used in this study and in [5] do not contain sampling
error or increased costs. These methods should be investigated more thoroughly, since they can be
cost-effective methods, although, on the other hand, they may lead to over-optimistic error values for
at least some forest parameters, which may be more problematic than conservative overestimation
of error.

5. Conclusions

Based on the results presented in this work, it can be concluded that the ALS-based forest
inventory method performed well in the Perm study site and the area based method employed can
fulfill the Russian inventory requirements for the main timber related variables (H, D, V and G).
The results were not as clear for species composition and age, and we cannot claim that the accuracy
requirements are met for these parameters. The RMSEs were, in general, slightly greater in the Perm
region study than in the Finnish studies used for comparison. The reasons for weaker performance can
be partly attributed to the input data (temporal mismatch of ALS and field data, low number of field
plots, optical satellite data instead of aerial photos) and partly to the more complex forest structure
and species distribution. Further research is needed to improve the species and age estimations,
which are important parameters in Russian forest inventory requirements. Comparison of the results
from different study sites was found to be challenging because of different result verification methods
and differences in distributions of the forest parameters. In addition, official stand-level accuracy
requirements may be open to interpretation and do not necessarily match with the validation methods
employed here. Thus, development of the result validation methods is as important as development of
the actual estimation method, if different forest inventory methods are compared, or inventory results
are investigated against inventory requirements.

Acknowledgments: The study was financed by the Ministry of Education and Science of the Perm region in
the framework of “International Research Groups” and its research project “Development of the Automated
Technologies of Forest Inventory based on Satellite Imagery and Airborne Laser Scanning”. Participants of the
international research group thank the Government of Perm Region for their support.

Author Contributions: Sergey Pyankov, Tuomo Kauranne, Jussi Peuhkurinen and Alexander Kedrov conceived
and designed the experiments; Alexander Kedrov organized and conducted the field data acquisition and the
verification of the inventory results; Maria Villikka, Sanna Sirparanta, Ville-Matti Vartio, Alexander Kedrov,
Andrey Tarasov and Anton Kuzmin processed the field and remotely sensed materials; Maria Villikka and
Sanna Sirparanta constructed the estimation models; Virpi Junttila developed the Sparse Bayesian method used in
this study; Jussi Peuhkurinen analysed the results; all authors contributed to the writing of the paper.



Forests 2017, 8, 72 17 of 20

Conflicts of Interest: The authors declare no conflicts of interest. The founding sponsors had no role in the design
of the study; in the collection, analysis or interpretation of data; in the writing of the manuscript; and in the
decision to publish the results.

Appendix

Table A1. Description of calculated Airborne Laser Scanning (ALS) and SPOT 5 (Satellite Pour
l’Observation de la Terre) variables used in the inventory models.

Name Data Description

L_L27M_14 ALS, last echo points Ratio of the number of points with height smaller or equal to
9.5 m to all points.

L_L27M_17 ALS, last echo points Ratio of the number of points with height smaller or equal to
15.5 m to all points.

L_L27M_26 ALS, first echo points Logarithm of the ratio of the number of ground points to all points.
L_L30M_05 ALS, first echo points Height of the point at the 50th percentile.
L_L30M_08 ALS, first echo points Height of the point at the 80th percentile.
L_L30M_09 ALS, first echo points Height of the point at the 90th percentile.
L_L30M_14 ALS, last echo points Height of the point at the 40th percentile.
L_L30M_16 ALS, last echo points Height of the point at the 60th percentile.

L_VD9530VD ALS, first and only echo points Ratio of the number of points above 0.3 × 95 th percentile height to
the number of all points.

L_VD9580VD ALS, first and only echo points Ratio of the number of points above 0.8 × 95 th percentile height to
the number of all points.

L_X_VD ALS, all echo points Ratio of the number of points above 2 m to the number of all points.
Sf_1_MEAN SPOT5, pansharpened Mean value of band 1.

Sf_NDVI2_MEAN SPOT5, pansharpened Mean value of vegetation index calculated using bands 3 and 2.
Sm_NDVI2_MEAN SPOT5 Mean value of vegetation index calculated using bands 3 and 2.
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Table A2. List of variables used in the models. The names of the variables reflect the way they have been calculated from ALS data or from satellite images but
describing those calculations is beyond the scope of the current article.

Target L_X_
VD

L_L30M_
08ˆ2

L_L30M_
09ˆ0.7*

L_VD9530VD

L_L30
M_05

L_L30
M_14

L_L30
M_09

L_L30
M_16

L_L27
M_14

L_L30
M_09ˆ0.7*

L_VD9530VD*
L_L30M_09

L_VD
9580VD

1/L_L30M_09*
L_L27M_17*
L_L27M_26

L_L30
M_09ˆ0.7*

L_VD9580VD

Sf_1_MEAN*
(L_L30M_09ˆ0.7*
L_VD9530VD*

L_L30M_09)

Sm_NDVI2_MEAN*
(L_L30M_09ˆ0.7*
L_VD9530VD*

L_L30M_09)

Sf_NDVI2_MEAN*
(L_L30M_09ˆ0.7*
L_VD9530VD*

L_L30M_09)

G x x x
V x x x x
N x x x x x x
H x x x x
D x x x x x x

G Pine x x x x x x x x x x x x x x
G Spruce x x x x x x x x x

G Deciduous x x x x x x x x x x
V Pine x x x x x x x x x x x x x x

V Spruce x x x x x x x x x
V Deciduous x x x x x x x x x x x

N Pine x x x x x x x x x x x x x x
N Spruce x x x x x x x x x x x

N Deciduous x x x x x x x x x x x x
H Pine x x x x x x x x

H Spruce x x x x x x x x x x x x
H Deciduous x x x x x x x x x x x x x x x

D Pine x x x x x x x x
D Spruce x x x x x x x x x x x

D Deciduous x x x x x x x x x x x x x x

G = Basal area, V = Volume, N = Stem count, H = Height, D = Diameter, * means multiplication.



Forests 2017, 8, 72 19 of 20

References

1. Maltamo, M.; Packalén, P.; Kallio, E.; Kangas, J.; Uuttera, J.; Heikkilä, J. Airborne Laser Scanning Based
Stand Level Management Inventory in Finland. In Proceedings of the SilviLaser 2011, 11th International
Conference on LiDAR Applications for Assessing Forest Ecosystems, Hobart, Australia, 16–20 October 2011.

2. Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage
procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [CrossRef]

3. Næsset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ.
1997, 61, 246–253. [CrossRef]

4. Packalén, P.; Maltamo, M. Predicting the plot volume by tree species using airborne laser scanning and aerial
photographs. For. Sci. 2006, 52, 611–622.

5. Packalén, P.; Maltamo, M. The k-MSN method for the prediction of species-specific stand attributes using
airborne laser scanning and aerial photographs. Remote Sens. Environ. 2007, 109, 328–341. [CrossRef]

6. Junttila, V.; Maltamo, M.; Kauranne, T. Sparse Bayesian estimation of forest stand characteristics from
airborne laser scanning. For. Sci. 2008, 54, 543–552.

7. Solodukhin, V.I.; Zukov, A.Y.; Mazugin, I.N. Possibilities of laser aerial photography for forest profiling.
Lesn. Khozyaistvo (For. Manag.) 1977, 10, 53–58. (In Russian)

8. Solodukhin, V.I.; Shevchenko, K.V.; Mazugin, I.N.; Bokova, T.K. Space Distribution of Trees in Correlation
with Stand Height, Detected at Laser Profile. In Lesoustroistvo, Taksaciya i Aerometody (Forest Planning,
Forest Inventory and Aerial Methods); Collection of Scientific Works, Leningrad Forestry Research Institute
(LenNIILH): Leningrad, Russia, 1985; pp. 75–83. (In Russian)

9. Stolyarov, D.P.; Solodukhin, V.I. About laser forest inventory. Lesn. Zurnal (For. J.) 1987, 5, 8–15. (In Russian)
10. Danilin, I.; Medvedev, E.; Sweda, T. Use of Airborne Laser Terrain Mapping System for Forest Inventory in

Siberia. In Proceedings of the First International Precision Forestry Cooperative Symposium, University of
Washington, Seattle, WA, USA, 17–20 June 2001; pp. 67–75.

11. Danilin, I.M.; Medvedev, E.M. Forest Inventory and Biomass Assessment by the Use of Airborne Laser
Scanning Method (Example from Siberia). In International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, Proceedings of the Laser-Scanners for Forest and Landscape Assessment, Freiburg,
Germany, 3–6 October, 2004; Thies, M., Koch, B., Spiecker, H., Weinacker, H., Eds.; The International Society
for Photogrammetry and Remote Sensing (ISPRS) Archives: Freiburg, Germany, 2004; Volume XXXVI-8/W2,
pp. 139–144.

12. Metsäkeskus. Suomen Metsäkeskuksen Metsävaratiedon Laatuseloste. 2016, p. 16. Available online:
http://www.metsakeskus.fi/sites/default/files/metsavaratiedon_laatuseloste.pdf (accessed on
14 November 2016). (In Finnish)

13. Arbonaut Products. Available online: http://www.arbonaut.com/en/products (accessed on
18 January 2017).

14. Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1,
211–244.

15. Junttila, V.; Kauranne, T.; Leppänen, V. Estimation of forest stand parameters from LiDAR using calibrated
plot databases. For. Sci. 2010, 56, 257–270.

16. Junttila, V.; Kauranne, T. Evaluating the robustness of plot databases in species-specific LiDAR based forest
inventory. For. Sci. 2012, 58, 311–325.

17. Junttila, V.; Kauranne, T.; Finley, A.O.; Bradford, J.B. Linear models for airborne-laser-scanning based
operational forest inventory with small field sample size and highly correlated LiDAR data. IEEE Trans.
Geosci. Remote Sens. 2015, 53, 5600–5612. [CrossRef]

18. Axelsson, P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models. In International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIII-B4, Proceedings of XIXth ISPRS
Congress, Technical Commission IV: Mapping and Geographic Information Systems, Amsterdam, The Netherlands,
16–23 July 2000; Fritsch, D., Molenaar, M., Eds.; ISPRS: Freibug, Germany, 2000; pp. 110–117.

19. Metsäkeskus. Kaukokartoitusperusteisen Metsien Inventoinnin Koealojen Maastotyöohje; Versio 1.4. 21.5.2014;
Metsäkeskus: Kuopio Area, Finland, 2014; p. 29. (In Finnish)

20. R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2016.

http://dx.doi.org/10.1016/S0034-4257(01)00290-5
http://dx.doi.org/10.1016/S0034-4257(97)00041-2
http://dx.doi.org/10.1016/j.rse.2007.01.005
http://www.metsakeskus.fi/sites/default/files/metsavaratiedon_laatuseloste.pdf
http://www.arbonaut.com/en/products
http://dx.doi.org/10.1109/TGRS.2015.2425916


Forests 2017, 8, 72 20 of 20

21. Lappi, J. Calibration of height and volume equations with random parameters. For. Sci. 1991, 37, 781–801.
22. Verkhunov, P.M.; Chernykh, V.L.; Kurnenkova, I.P.; Popova, N.N. Assortment Tables for Flat Land Forests

in Ural Region; ALL-Russian Research Institute for Silviculture and Mechanization of Forestry (VNIILM):
Pushkino, Russia, 2002; p. 488. (In Russian)

23. Maltamo, M.; Packalén, P.; Suvanto, A.; Korhonen, K.T.; Mehtätalo, L.; Hyvönen, P. Combining ALS and NFI
training data for forest management planning: A case study in Kuortane, Western Finland. Eur. J. For. Res.
2009, 128, 305–317. [CrossRef]

24. Wallenius, T.; Laamanen, R.; Peuhkurinen, J.; Mehtätalo, L.; Kangas, A. Analysing the agreement between
an Airborne Laser Scanning based forest inventory and a control inventory—A case study in the state owned
forests in Finland. Silva Fenn. 2012, 46, 111–129. [CrossRef]

25. Gobakken, T.; Korhonen, L.; Næsset, E. Laser-assisted selection of field plots for an area based forest
inventory. Silva Fenn. 2013. [CrossRef]

26. Peuhkurinen, J.; Gonzalez Aracil, S.; Ketola, J. Using Aerial Photographs and VHR Satellite Data as
an Auxiliary Information in Airborne LiDAR-Based Estimation of Species-Specific Forest Characteristics.
In Operational Tools in Forestry Using Remote Sensing Techniques, Proceedings of the International Conference on
Spatial Application Tools in Forestry (ForestSAT 2010), Lugo, Spain, 7–10 September 2010; Miranda, D., Suarez, J.,
Crecente, R., Eds.; University of Santiago de Compostela: Lugo, Spain, 2010; pp. 318–319.

27. Gobakken, T.; Næsset, E. Assessing Effects of Laser Point Density on Biophysical Stand Properties Derived
from Airborne Laser Scanner Data in Mature Forest. In ISPRS Archives—Volume XXXVI-3/W52, Proceedings
of the ISPRS Workshop ‘Laser Scanning 2007 and SilviLaser 2007’, Espoo, Finland, 12–14 September 2007;
Rönnholm, P., Hyyppä, H., Hyyppä, J., Eds.; ISPRS: Freiburg, Germany, 2007; pp. 150–155.

28. Forest Management Instruction 2011. (Lesoustroitelnaya instruktsiya 2011). Federal Forest Agency Order
Number 516, 12 December 2011 on establishment of Forest Management Instruction. (Prikaz Federalnogo
Agentstva Lesnogo Hozyaistva ot 12 dekabrya 2011 goda No. 516 ob utverzdenii lesoustroitelnoi instruktsii).
Available online: https://rg.ru/2012/03/07/lesoustroystvo-site-dok.html (accessed on 28 October 2016).
(In Russian)

29. Arkhipov, V.I.; Chernikhovski, D.M.; Berezin, V.I. An experience of forest inventory by photo interpretation
method based on advanced firmware and digital aerial photographs of new generation. Sib. J. For. Sci. 2014,
5, 29–37. (In Russian)

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10342-009-0266-6
http://dx.doi.org/10.14214/sf.69
http://dx.doi.org/10.14214/sf.943
https://rg.ru/2012/03/07/lesoustroystvo-site-dok.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	ALS and Satellite Data 
	Field Reference Plots 
	Plot Level Models 
	Inventory Model Construction 
	Model Validation 

	Results 
	Field Reference Plot Level Results 
	Stand Level Result Construction and Validation 

	Discussion 
	Comparison with Other Studies and Approaches 
	Validation Metrics 

	Conclusions 
	

